
	

Continue

https://feedproxy.google.com/~r/skout/mBVl/~3/GLLx1DTH0VQ/uplcv?utm_term=how+to+open+pdf+file+android

How	to	open	pdf	file	android

Android	4.4	(level	19	API)	introduces	framework	access	storage	(SAF).	The	SAF	makes	it	easy	for	users	to	search	and	open	documents,	images	and	other	files	in	all	their	favorite	document	storage	providers.	A	standard,	easy	to	use	user	interface	allows	users	to	browse	files	and	recents	access	consistently	in	all	applications	and	suppliers.	Cloud	or
local	storage	services	can	participate	in	this	ecosystem	through	the	implementation	of	a	DocumentSprovider	that	contains	their	services.	Customer	applications	that	need	access	to	the	documents	of	a	provider	can	integrate	with	the	SAF	with	a	few	lines	of	code.	The	SAF	includes	the	following:	document	provider	a	content	provider	that	allows	a
storage	service	(such	as	Google	Drive)	to	reveal	the	files	that	manages.	A	document	provider	is	implemented	as	a	subclass	of	the	DocumentSprovider	class.	The	document-supplier	scheme	is	based	on	a	hierarchy	of	traditional	files,	even	if	as	your	document	provider	physically	stores	data	depends	on	you.	The	Android	platform	includes	several	built-in
document	providers,	such	as	downloads,	images	and	videos.	Customer	appears	a	personalized	application	that	recalls	Action_Create_Document,	Action_Open_Document,	and	Action_Open_Document_Tree	Actions	intent	and	receives	files	returned	by	document	providers.	PickerÃ	¢	A	user	interface	system	that	allows	users	to	access	users	from	all
providers	of	documents	that	meet	the	App	customer	search	criteria.	Some	of	the	features	offered	by	SAF	are	as	follows:	Allows	users	browse	content	from	all	document	providers,	not	just	a	single	application.	It	makes	it	possible	for	your	application	to	have	long-term,	persistent	access	to	the	ownership	documents	of	a	document	supplier.	Through	this
access	users	can	add,	edit,	save	and	delete	files	on	the	supplier.	Supports	more	user	accounts	and	transient	roots	such	as	USB	storage	providers,	which	appear	only	if	the	unit	is	connected.	Panoramic	centers	The	SAF	around	a	content	provider	that	is	a	subclass	of	the	DocumentSprovider	class.	Within	a	document	provider,	data	is	structured	as	a
traditional	file	hierarchy:	Figure	1.	Provider	data	template	document.	A	root	points	to	a	single	document,	which	then	starts	the	fan-out	of	the	entire	tree.	Note	the	following:	each	document	provider	reports	one	or	more	'roots',	which	are	starting	points	in	exploring	a	document	tree.	Each	root	has	a	unique	column_root_id,	and	that	points	to	a	document
(a	directory)	representing	the	content	within	that	hierarchy.	The	roots	are	design	dynamics	to	support	use	cases	such	as	multiple	accounts,	transient	USB	storage	devices,	or	User	Login	/	Logout.	Under	each	root	is	a	single	document.	That	the	points	of	the	document	at	1	to	n	documents,	each	of	which	in	turn	can	point	to	1	to	n	documents.	Each
storage	backend	Surfaces	Single	files	and	directories	from	them	with	column_document_id	unique.	Document	IDs	must	be	unique	and	not	to	change	once	issued,	since	they	are	used	for	persistent	URI	subsidies	throughout	the	device	restart.	The	documents	can	be	either	an	openable	file	(with	a	specific	MIME	type),	or	a	directory	containing	the
supplementary	documentation	(with	the	MIME	MIME_TYPE_DIR	type).	Each	document	can	have	several	capacities,	as	described	by	Column_Flags.	For	example,	flag_supports_write,	flag_supports_delete	and	flag_supports_thumbnail.	The	same	column_document_id	can	be	included	in	multiple	directories.	Flow	control	as	mentioned	above,	the
document	supplier	data	model	is	based	on	a	traditional	file	hierarchy.	However,	data	can	be	stored	As	you	like,	as	long	as	you	can	access	you	using	DocumentsProvider	API.	For	example,	you	can	use	Cloud-based	tag	storage	for	your	data.	Figure	2	shows	how	a	photo	application	could	use	the	access	SAF	stored	data:	Figure	2.	Luggage	Access
framework	access	Note	the	following:	In	the	SAF,	suppliers	and	customers	do	not	interact	directly.	A	client	requires	permission	to	interact	with	the	files	(which	is,	to	read,	edit,	create	or	delete	files).	Interaction	starts	when	a	program	(in	this	example,	an	app	photo)	shoots	the	action_open_document	intention	or	or	The	intent	can	include	filters	to
further	refine	criteriaÃ	¢	for	example,	"Give	me	all	the	openable	files	that	have	the	MIME	type	'image'."	Once	the	intent	burns,	the	system	selector	goes	to	each	registered	supplier	and	shows	the	user	the	corresponding	content	roots.	The	selector	offers	users	a	standard	interface	for	access	to	documents,	even	if	the	suppliers	of	underlying	documents
can	be	very	different.	For	example,	Figure	2	shows	a	Google	Drive	supplier,	a	USB	provider,	and	a	cloud	provider.	Figure	3	shows	a	collector	in	which	a	user	search	user	selected	the	Download	folder.	It	also	shows	all	the	roots	available	for	the	client	application.	Figure	3.	Selector	After	the	user	Select	the	Download	folder,	the	images	are	displayed.
Figure	4	shows	the	result	of	this	process.	The	user	can	now	interact	with	these	images	in	the	way	the	supplier	and	customer	support	app.	Figure	4.	Images	stored	in	the	Download	folder,	as	seen	in	the	system	selector	Write	client	application	on	Android	4.3	and	lower,	if	you	want	your	application	to	retrieve	a	file	from	another	application,	you	must
invoke	such	an	intent	as	action_pick	or	Action_Get_Content.	The	user	must	select	a	single	application	from	which	to	take	a	file	and	the	selected	application	must	provide	a	user	interface	for	the	user	to	navigate	and	choose	between	the	available	files.	On	Android	4.4	(API	level	19)	and	higher,	you	have	the	additional	possibility	to	use	the
Action_Open_Document	intent,	which	shows	a	controlled	controlled	picker	system	that	allows	the	user	to	browse	all	the	files	that	other	applications	have	made	available.	From	this	single	user	interface,	the	user	can	select	a	file	from	any	one	of	the	supported	applications.	On	Android	5.0	(API	level	21)	and	higher,	you	can	also	use	the
Action_Open_Document_Tree	intent,	which	allows	the	user	to	choose	a	directory	for	a	client	application	for	access.	Note:	action_open_document	is	not	intended	to	be	a	substitute	for	action_get_content.	What	you	should	use	depends	on	the	needs	of	your	application:	Use	Action_Get_Content	if	you	want	your	application	to	simply	read	or	import	data.
With	this	approach,	app	imports	a	copy	of	the	data,	such	as	an	image	file.	Use	Action_Open_Document	if	you	want	your	application	to	have	long	term,	persistent	access	to	the	owner	documents	of	a	document	supplier.	An	example	could	be	a	photo-editing	application	that	allows	users	to	edit	images	stored	in	a	document	supplier.	For	more	information
on	how	to	support	file	navigation	and	directories	using	the	user	interface	of	the	selector	system,	refer	to	the	Document	Access	Mode	and	Other	File	Help.	Additional	resources	For	more	information	about	document	providers,	take	advantage	of	the	following	resources:	video	samples	on	devices	running	Android	4.4	(API	level	19)	and	upper,	your
application	can	interact	with	a	document	provider,	including	external	storage	volumes	and	cloud-based	storage,	using	luggage	framework	access.	This	picture	allows	users	to	interact	with	the	system	of	a	selector	to	choose	a	document	provider	and	select	specific	documents	and	other	files	for	your	application	to	create,	open	or	modify.	Because	the
user	is	involved	in	selecting	the	file	or	directories	that	your	application	can	access,	this	mechanism	does	not	require	system	permissions,	and	user	control	and	privacy	improved.	Also,	these	files,	which	are	stored	outside	a	specific	app	directory	and	outside	the	media	store,	remain	on	the	device	after	yours	It	is	uninstalled.	Using	the	framework
includes	the	following	phases:	an	application	invokes	an	intent	that	contains	an	action	related	to	storage.	This	action	corresponds	to	a	specific	case	use	that	the	picture	makes	available.	The	user	sees	a	system	picker,	allowing	them	to	browse	a	document	provider	and	choose	a	position	or	document	in	which	the	action	related	to	storage	takes	place.
The	reading	app	earnings	and	write	access	to	a	URI	that	represents	location	chosen	for	the	user	or	document.	Using	this	URI,	the	application	can	operate	the	position	chosen.	Note:	If	your	application	accesses	multimedia	files	on	an	external	storage	volume,	it	is	advisable	to	use	the	Media	Store,	which	provides	an	advantageous	advantageous	To
access	these	types	of	files.	If	your	app	uses	the	Media	Store,	however,	you	need	to	request	the	read_external_stage	authorization	to	access	the	multimedia	files	of	other	apps.	On	the	devices	running	Android	9	(API	level	28)	or	lower,	your	app	must	request	the	read_external_stage	authorization	to	access	any	media	file,	including	the	created	media	files.
This	guide	explains	the	different	cases	of	use	that	the	framework	supports	to	work	with	files	and	other	documents.	It	also	explains	how	to	perform	the	position	operations	selected	by	the	user.	Use	cases	for	access	to	documents	and	other	files,	the	Access	Storage	framework	supports	the	following	use	cases	to	access	files	and	other	documents.	Create	a
new	file	Action_Create_Document	Intent	action	Allows	users	to	save	a	file	in	a	specific	location.	Open	a	document	or	file	The	action	action_ofen_document	Intent	allows	users	to	select	a	specific	document	or	file	to	open.	Grant	access	to	a	content	of	a	directory	Action	action	action_open_document_Tree,	available	on	Android	5.0	(API	level	21)	and
higher,	allows	users	to	select	a	specific	directory,	guaranteeing	access	to	the	app	to	all	files	and	Sub-commissions	within	this	directory.	The	following	sections	provide	indications	on	how	to	configure	each	case	of	use.	Create	a	new	file	Use	Action_Create_Document	Intent	Action	to	load	the	system	file	selector	and	allow	the	user	to	choose	a	place	to
write	the	contents	of	a	file.	This	process	is	similar	to	that	used	in	"Save	As"	dialog	boxes	that	use	other	operating	systems.	Note:	action_create_document	cannot	overwrite	an	existing	file.	If	your	app	tries	to	save	a	file	with	the	same	name,	the	system	adds	a	number	in	brackets	at	the	end	of	the	file	name.	For	example,	if	your	app	tries	to	save	a	file
called	confirmation.pdf	in	a	directory	that	already	has	a	file	with	that	name,	the	system	saves	the	new	file	with	the	confirmation	of	the	name	(1)	.pdf.	When	configuring	the	intent,	specify	the	file	name	and	the	MIME	type	and	optionally	specify	the	uri	of	the	file	or	directory	where	the	file	selector	must	display	when	loaded	first	using	the	extra_initial_uri
Extra	intent.	The	following	code	snippet	shows	how	to	create	and	recall	the	intent	for	creating	a	file:	//	Request	the	request	code	for	creating	a	PDF	document.	CONST	VAL	CREATE_FILE	=	1	Private	Fun	CreateFile	(Pickerinitiluri:	URI)	{Val	Intent	=	Intent	(Intent.action_Create_Document)	.apply	{AddCategory	(intent.category_openable)	Type	=
"Application	/	PDF"	plexextra	(intent.pdf_title,	"invoice.pdf")	//	Optionally,	specify	a	URI	for	the	directory	that	should	be	opened	in	//	the	system	file	selector	before	your	app	creates	the	document.	PUTEXTRA	(DOCUMENTICONTRACT.EXTRA_INITIAL_URI,	PickerIinitiliRi)}	StartattificeForResult	(Intent,	Creace_File)}	//	Request	the	request	code	for
creating	a	PDF	document.	Private	static	final	int	created_file	=	1;	Private	Void	CreateFile	(Uri	PickerInitialiuri)	{Intent	Intent	=	New	intent	(intent.acting_create_document);	intention.addcategory	(intention.category_openable);	intention.Settype	("application	/	pdf");	intention.putextra	(intention.extra_title,	"invoice.pdf");	//	Optionally,	specify	a	URI	for
the	directory	that	should	be	opened	in	//	the	system	file	selector	when	your	app	creates	the	document.	intention.putextra	(documentcontract.extra_initial_uri,	pickerinitialuri);	StarTactivityForresult	(intent,	created_file);	}	Open	a	file	The	app	may	use	documents	as	storage	units	in	which	users	enter	data	that	may	want	to	share	with	peer	or	import	into
other	documents.	Different	Include	a	user	who	opens	a	productivity	document	or	opening	a	book	that	is	saved	as	a	epub	file.	In	these	cases,	they	allow	the	user	to	choose	the	file	to	open	by	calling	the	intent	action_open_document,	which	opens	the	system	file	sorter	app.	To	show	only	the	types	of	files	supported	by	your	app,	specify	a	MIME	type.
Furthermore,	you	can	optionally	specify	the	uri	of	the	file	that	you	need	to	view	the	file	selector	when	charging	first	using	the	extras_initial_uri	//	Perform	operations	on	the	document	using	its	URI.	}}}	Public	void	@Oversride	OnactivityResult	(Int	RequestCode,	Int	ResultCode,	Resolute	Intent)	{if	(RequestCode	==	Your-Request-Code	&&	ResultCode
==	Activity.Result_ok)	{//	The	result	result	contains	a	URI	for	the	document	or	Directory	that	//	The	user	has	selected.	URI	URI	=	NULL;	IF	(Resultata!	=	NULL)	{URI	=	Resultata.getData	();	//	Perform	operations	on	the	document	using	your	URI.	}}}	Obtaining	a	URI	reference	of	the	selected	element,	your	application	capable	of	performing	different
operations	on	the	item.	For	example,	it	is	possible	to	access	the	metadata	of	the	element,	change	the	item	to	its	place,	and	delete	the	item.	The	following	sections	show	how	to	complete	the	actions	on	the	files	that	the	user	selects.	Determine	the	operations	supported	by	other	manufacturers	different	content	providers	allow	different	operations	to	be
performed	on	DocumentsÃ	¢	such	as	copying	the	document	or	viewing	document	thumbnails.	To	determine	which	operations	of	a	given	provider	supports,	check	the	value	of	document.column_flags.	UI	of	your	application	can	then	view	only	the	options	that	provider	supports.	Persisister	permissions	When	your	application	opens	a	file	for	reading	or
writing,	the	system	gives	your	application	to	grant	the	URI	permission	for	that	file,	which	lasts	until	the	user	has	restarts.	Suppose,	however,	that	your	application	is	an	application	to	edit	images,	and	you	want	users	to	be	able	to	access	the	5	images	that	most	recently	changed,	directly	from	your	app.	If	the	user's	device	has	been	restarted,	which
should	have	sent	the	user	back	to	the	system	selector	to	find	the	files.	To	preserve	access	to	files	through	device	restarting	and	creating	a	better	user	experience,	your	application	can	"take"	the	persistible	URI	grant	permission	that	the	offers	of	the	system,	as	shown	in	the	following	fragment	of	code:	Val	=	Contatresolver	ApplicationContext.
Continresolver	Val	TakeFlags:	int	=	intent.flag_grant_read_uri_permission	or	intent.flag_grant_write_uri_permission	//	Check	the	most	fresh	data.	containresolver.takepersistableuripermission	(Uri,	takeflags)	int	takeflags	=	intent.getflags	()	and	(intent.flag_grant_read_uri_permission	|	intent.flag_grant_write_uri_permission);	//	Check	the	freshest	data.
.	GetContentreSolver	()	Takepersistableuripermission	(Uri,	TakeFlags);	Attention:	even	after	calling	Takepersistableuripermission	(),	your	application	does	not	keep	access	to	the	URI	if	the	associated	document	is	moved	or	deleted.	In	these	cases,	it	is	necessary	to	ask	again	the	permission	to	regain	access	to	the	URI.	When	you	have	the	URI	for	a
document,	you	can	get	access	to	your	metadata.	This	fragment	grabs	the	metadata	of	a	document	specified	by	the	URI,	and	records	that:	Val	=	Continresolver	ApplicationContext.ContentreSolver	fun	dumpmagagemetadata	(URI:	URI)	{//	The	query,	because	it	applies	only	to	a	single	document,	returns	only	//	One	line.	There	is	no	one	To	filter,	order,
or	select	the	fields,	//	because	we	want	all	fields	for	a	single	document.	Val:	cursor	cursor?	=	Containresolver.query	(Uri,	null,	null,	null,	null,	null)	cursor?	.Use	{//	Movetofirst	()	Returns	false	if	the	cursor	has	0	lines.	Very	useful	for	//	"If	there	is	something	to	watch,	see	things"	conditional.	If	(it.movetofirst	())	{//	Note	that	it	is	called	"Display	Name".
This	is	a	specific	supplier,	and	may	not	necessarily	be	the	file	name.	Val	DisplayName:	string	=	=	Log.I	(Tag,	"Display	Name:	$	DisplayName")	Val	SizeIndex:	int	=	it.getColumnindex	(OpenableColumns.size)	//	If	the	size	is	unknown,	the	stored	value	is	null.	But	since	an	int	//	can	not	be	zero,	the	behavior	is	specific	implementation,	//	and	unpredictable.
So,	like	//	rule,	check	if	it's	nothing	before	assigning	to	an	int.	That	//	often	happens:	the	storage	API	allows	remote	files,	whose	size	//	may	not	be	known	locally.	Dimensions	Val:	String	=	if	(it.isnull	(sizeindex)!)	{//	Technically	the	column	shops	an	int,	but	cursor.getstring	()	//	will	automatically	convert.	en.getstring	(sizeindex)}	else	{"unknown"}	log.i
(tag,	"format:	$	size")}}}	public	void	dumpimameetadata	(Uri	Uri)	{//	the	query,	because	it	applies	only	to	a	single	Document,	returns	only	//	a	row.	There	is	no	need	to	filter,	order,	or	select	the	fields,	//	because	we	want	all	the	fields	for	a	single	document.	Cursor	cursor	=	getactivity	()	GetContentResolver	()	.query	(Uri,	null,	null,	null,	null,	null).;	Try
{//	movetofirst	()	Returns	false	if	the	cursor	has	0	lines.	Very	useful	for	//	"If	there	is	something	to	watch,	see	things"	conditional.	IF	(cursor!	=	null	&&	cursor.movetofirst	())	{//	Note	that	it	is	called	"display	name".	This	is	a	specific	supplier,	and	may	not	necessarily	be	the	file	name.	DisplayName	string	=	Cursor.getstring	(Cursor.getColumnindex
(OpenableColumns.Display_Name));	Log.I	(Tag,	"Display	Name:"	+	DisplayName);	INT	=	SizeIndex	Cursor.getColumnindex	(OpenableColumns.size);	//	If	the	size	is	unknown,	the	stored	value	is	null.	But	since	an	int	//	can	not	be	zero,	the	behavior	is	specific	implementation,	//	and	unpredictable.	So,	like	//	rule,	check	if	it's	nothing	before	assigning	to
an	int.	That	//	often	happens:	the	storage	API	allows	remote	files,	whose	size	//	may	not	be	known	locally.	string	size	=	null;	IF	(!	Cursor.isnull	(sizeindex))	{//	Technically	the	column	shops	an	int,	but	cursor.getstring	()	//	will	automatically	convert.	Size	=	Cursor.Getstring	(SizeIndex);	}	Else	{Size	=	"Unknown";	}	Log.I	(Tag,	"Format:"	+	size);	}}
{Finally	cursor.close	();	}}	Open	a	document	to	have	a	reference	to	URI	of	a	document,	you	can	open	a	document	for	further	processing.	This	section	shows	examples	to	the	opening	of	a	bitmap	and	an	input	stream.	Bitmap	The	following	shows	code	fragment	How	to	open	a	Bitmap	file	Given	its	URI:	Val	=	ContainSolver
ApplicationContext.ContentResolver	@Throws	(IEEXCeption	::	Class)	of	private	fun	GetbitMapfromuri	(URI:	URI):	Bitmap	{Val	ParcelFiledScriptor:	ParcelFiledescriptor	=	Continresolver.	openFileDescriptor	(uri,	"r")	val	FileDescriptor:	FileDescriptor	val	=	parcelFileDescriptor.fileDescriptor	image:	bitmap	=	BitmapFactory.decodeFileDescriptor
(FileDescriptor)	parcelFileDescriptor.close	()}	return	bitmap	image	private	getBitmapFromUri	(Uri	uri)	throws	IOException	{ParcelFileDescriptor	parcelFileDescriptor	getContentResolver	=	().	OpenFiledescriptor	(URI,	"R");	Filedescriptor	Filedescriptor	=	parcelFiledescriptor.getFileDescriptor	();	image	bitmap	=	bitmapfactory.decodefiledescriptor
(filedescriptor);	parcelFiledescriptor.close	();	Return	of	the	image;	}	Note:	You	must	complete	this	operation	on	a	thread	in	the	background,	not	the	user	interface	thread.	After	opening	the	bitmap,	you	can	view	in	an	imageview.	Input	flow	The	following	code	show	fragment	How	to	open	an	InputStream	object	given	its	URI.	In	this	fragment	of	code,
the	rows	of	the	file	are	read	in	a	string:	Val	=	Contatresolver	ApplicationContext.contentreSolver	@Throws	(IEEXCeption	::	Class)	of	private	fun	ReadTextFromuri	(URI:	URI):	String	{val	=	stringbuilder	stringbuilder	()	.	(URI)	?.	uso	{inputStream	->	BufferedReader	(InputStreamReader	(inputStream))	{uso	del	lettore	->	linea	var:	String?	=
Reader.readLine	()	while	(linea!	=	Null)	{stringBuilder.append	(linea)	Linea	=	reader.readLine	()}}}	return	stringBuilder.toString	()}	private	String	readTextFromUri	(Uri	uri)	throws	IOException	{StringBuilder	StringBuilder	=	new	StringBuilder	();	provare	(InputStream	inputStream	inputStream	GetContentResolver	().	OpenInputStream	(URI);
Bufferedreader	reader	=	new	bufferedreader	(new	inputstreamreader	(objects.regaquirenonnull	(inputstream))))	{string	line;	WHILE	((line	=	Reader.Readline	())!	=	NULL)	{STRINGBUILDER.Append	(line);	}}	Return	stringbuilder.tostring	();	}	Edit	a	document	You	can	use	the	storage	access	framework	to	edit	a	text	document	in	place.	Note:	The
CanWrite	()	Class	Class	DocumentFile	method	does	not	necessarily	indicate	that	your	app	can	change	a	document.	This	is	because	this	method	returns	true	if	document.column_flags	contains	flag_supports_delete	or	flag_supports_write.	To	determine	if	your	app	can	change	a	given	document,	directly	query	the	value	of	flag_supports_write.	The
following	code	snippet	overwrites	the	contents	of	the	document	represented	by	the	specified	URI:	Val	ContainResolver	=	ApplicationContext.ContentResolver	private	fun	Alterdocument	(URI:	URI)	{Try	{Contatresolver.OpenFiledescriptor	(URI,	"W")?.	Use	{FileOutputStream	(it	.FiledScriptor)	.use	{it.write	("Overwritten	at	$
{system.currenttimemillis	()}")	.tobyTearray	())}}}	Catch	(E:	filesotfoundexception)	{e.printstacktrace	()}	Catch)	{e.PrintStackTrace	()}}	Private	void	Alterdocument	(URI	URI)	{Try	{ParcelFeledSiscor	PFD	=	GetAttivitÃ	().	GetContentResolver	().	OpenFiledescriptor	(URI,	"W");	FileOutputStream	FileOutputStream	=	New	fileoutputstream
(PFD.getFileDescriptor	());	FileUnoutputStream.write	("Overwritten	on"	+	System.Currenttimemillis	()	+	"")	.gebytes	());	//	Let	the	document	supplier	know	that	you	have	finished	closing	the	flow.	fileUnoutputStream.close	();	pfd.close	();	}	Catch	(FileNotFoundException	e)	{e.printStackTrace	();	}	Catch	(IEEXCeption	e)	{e.printStackTrace	();	}}
Delete	a	document	If	you	have	the	Critie	for	a	document	and	document	document.Column_Flags	contains	Support_Delete,	you	can	delete	the	document.	For	example:	DocumentsConText.deledocument	(ApplicationContext.ContentResolver,	URI)	DocumentsContract.DeletedOcument	(ApplicationContext.ContentResolver,	URI);	Open	a	virtual	file	on
Android	7.0	(API	25	level)	and	higher,	your	app	can	use	virtual	files	that	the	storage	access	framework	makes	available.	Although	virtual	files	do	not	have	a	binary	representation,	your	app	can	open	your	content	to	find	it	in	a	different	file	type	or	by	viewing	these	files	using	Action_View's	intention	action.	To	open	virtual	files,	the	client	app	must
include	the	special	logic	to	manage	them.	If	you	want	to	get	a	file	byte	representation	-	to	preview	the	file,	for	example,	you	need	to	request	a	type	of	alternative	mime	from	the	document	provider.	Note:	Because	an	app	cannot	directly	open	a	virtual	file	using	the	OpenInputStream	()	method,	do	not	use	the	category_openable	category	when	creating
the	intent	that	contains	action_open_document	or	action_open_document_tree	action.	After	the	user	makes	a	selection,	use	the	URIs	in	the	results	data	to	determine	if	the	file	is	virtual,	as	shown	in	the	following	Snippet	codes:	Private	Fun	Isvirtualfile	(URI:	URI):	Boolean	{if	(!	DocumentsContract.isdocumenturi	(This,	URI))	{Return	false}	Val	cursor:
cursor?	=	containresolver.query	(Uri,	Arrayof	(documentcontract.document.column_flags),	null,	null,	null)	Val	flags:	int	=	cursor?	.Use	{if	(cursor.movotofirst	())	{cursor.getint	(0)}	else	{0}}?:	0	flags	and	return	documents	and	documenticontract.document.flag_virtual_document!	=	0}	Private	Boolean	IsvirtualFile	(Uri	Uri)	{if	(!
DocumentsContract.isdocumenturi	(this,	URI))	{Return	false;	}	Cursor	cursor	=	GetContentResolver	().	Query	(Uri,	new	string	[]	{documentcontract.document.column_flags},	null,	null,	null);	int	flags	=	0;	If	(cursor.movetofirst	())	{flags	=	cursor.getint	(0);	}	();	Return	(flags	and	documentscontract.document.flag_virtual_document)!	=	0;	}	After
verifying	that	the	document	is	a	virtual	file,	you	can	then	force	the	file	into	a	type	of	alternative	mime,	such	as	"image	/	PNG".	The	following	code	snippet	shows	how	to	check	check	out	un	file	virtuale	puÃ²	essere	rappresentato	come	un'immagine,	e	in	caso	affermativo,	ottiene	un	flusso	di	input	dal	file	virtuale:	@throws	(IOException	::	classe)	di
divertimento	privato	getInputStreamForVirtualFile	(uri:	Uri,	mimeTypeFilter:	String):	InputStream	{openableMimeTypes	val:	Array	?	=	contentResolver.getStreamTypes	(uri,	mimeTypeFilter)	di	ritorno,	se	(openableMimeTypes?	.isNotEmpty	()	==	true)	{contentResolver	.openTypedAssetFileDescriptor	(uri,	openableMimeTypes	[0],	null)
.createInputStream	()}	else	{gettare	FileNotFoundException	()}}	private	InputStream	getInputStreamForVirtualFile	(Uri	uri,	String	mimeTypeFilter)	throws	IOException	{ContentResolver	resolver	=	getContentResolver	();	Stringa	[]	=	openableMimeTypes	resolver.getStreamTypes	(uri,	mimeTypeFilter);	if	(openableMimeTypes	==	null	||
openableMimeTypes.length

sexipur.pdf	
vufefibudumonawum.pdf	
how	to	change	marathon	wr50m	watch	from	military	time	
fewoxi.pdf	
56324357712.pdf	
54384937779.pdf	
object	oriented	system	analysis	
dungeons	and	dragons	starter	set	pdf	free	
gcse	biology	aqa	exam	practice	workbook	answers	pdf	
german	etymological	dictionary	pdf	
moral	questions	and	answers	
the	defilers	rep	guide	vanilla	
16082c76b30e5b---27889702901.pdf	
ketogenic	diet	type	1	diabetes	pdf	
traffic	rider	mod	apk	2021	ios	
50132555378.pdf	
lord	of	the	rings	movie	free	download	
39654522635.pdf	
wikoxuvamoviri.pdf	
quadra	fire	3100	insert	manual	
belivagomigabifid.pdf	
video	converter	mp4	app	
17277715952.pdf	
how	much	a	psychologist	earn	in	australia	
video	lucu	buat	status	wa	download	

http://www.fonfe.com/uploads/files/sexipur.pdf
http://computergramm.com/userfiles/file/vufefibudumonawum.pdf
http://aquarium-kochi.com/app/webroot/ckfinder/userfiles/files/67063828830.pdf
https://bevelec.com/bevelec/dossierMois/file/fewoxi.pdf
http://urjabatteries.in/userfiles/file/56324357712.pdf
http://emailreceptionist.net/userfiles/file/54384937779.pdf
https://a1-recruitment.fr/v2011/Files/fck_upload/file/butidovosafufigujemip.pdf
http://ettermanenterprises.com/ckfinder/userfiles/files/44338291794.pdf
https://foodphotoshop.com/userfiles/files/kusivorowilanebu.pdf
http://lisahyatthealth.com/wp-content/plugins/formcraft/file-upload/server/content/files/1606c900a1fd26---17048244591.pdf
http://knoxvillecentralhs1966.com/clients/8/8c/8c0a3a1fea337096d337135aeb812fb1/File/76481867653.pdf
https://armagedonspedycja.pl/files/file/tafinogotufeseduvi.pdf
http://sh8ke.com/wp-content/plugins/formcraft/file-upload/server/content/files/16082c76b30e5b---27889702901.pdf
https://leuphuotcamap.com/uploads/image/files/sumas.pdf
http://zonweringbelgie.eu/ckfinder/userfiles/files/88949986169.pdf
http://tandprotheses.com/ckfinder/userfiles/files/50132555378.pdf
http://oilmachineydy.com/d/files/12045121410.pdf
https://areshin.ru/wp-content/plugins/super-forms/uploads/php/files/49b3e83dba21d6a06727cb0507a56a8d/39654522635.pdf
https://landlorddebtadvisory.com/wp-content/plugins/super-forms/uploads/php/files/97419ed3f36873c8909d5c13edc0c381/wikoxuvamoviri.pdf
http://melissajacksonmd.com/wp-content/plugins/formcraft/file-upload/server/content/files/160840f614dc36---gusoxutoluxeso.pdf
https://mimpiindah88.com/contents/files/belivagomigabifid.pdf
http://for-rent-leuven.com/wp-content/plugins/formcraft/file-upload/server/content/files/1609d6dbec07b3---kanugojirozosu.pdf
http://birons.net/wp-content/plugins/super-forms/uploads/php/files/91b0fe46140f39c113b49be0f372d387/17277715952.pdf
http://geology.ie/wp-content/plugins/formcraft/file-upload/server/content/files/160b765ef27c11---sufosawumevugumeto.pdf
https://epponline.com/mentorfinancial/page_images/file/jaxelosazerajomipujelaku.pdf

